USN

Sixth Semester B.E. Degree Examination, December 2010 Operations Research

Time: 3 hrs.

Max. Marks:100

Note: 1. Answer any FIVE full questions, selecting at least TWO questions from each part. 2. Missing data, if any, may be suitably assumed.

PART - A

1 a. What is operations research? Explain the six phases of a study.

(07 Marks)

b. Use the graphical method to solve the problem:

 $Maximise Z = 10x_1 + 20x_2$

Subject to

$$- x_1 + 2x_2 \le 15$$
$$x_1 + x_2 \le 12$$

$$5x_1 + 3x_2 \le 45$$

and $x_1, x_2 \ge 0$.

(07 Marks)

c. Explain the linear programming model.

(06 Marks)

- 2 a. Explain the steps needed to find feasible solution using simplex method.
- (06 Marks)
- b. Work through the simplex method step by step to solve the following problem:

Minimize $Z = x_1 - 3x_2 + 3x_3$

Subject to
$$3x_1 - x_2 + 2x_3 \le 7$$

$$2x_1 + 4x_2 \ge -12$$

- $4x_1 + 3x_2 + 8x_3 \le 10$

and
$$x_1, x_2, x_3 \ge 0$$
.

(14 Marks)

3 a. Solve, by using Big – M method, the following linear programming problem :

Maximise $Z = -2x_1 - x_2$

Subject to
$$3x_1 + x_2 = 3$$

$$4x_1 + 3x_2 \ge 6$$

$$x_1 + 2x_2 \le 4$$

and
$$x_1, x_2 \ge 0$$
.

(07 Marks)

b. Use two-phase method to solve the problem:

Minimize $Z = 0.4x_1 + 0.5x_2$

Subject to
$$0.3x_1 + 0.1x_2 \le 2.7$$

$$0.5x_1 + 0.5x_2 = 6$$

$$0.6x_1 + 0.4x_2 \ge 6$$

and
$$x_1, x_2 \ge 0$$
.

(13 Marks)

4 a. Apply revised simplex method to solve the following problem:

Maximise $Z = 6x_1 - 2x_2 + 3x_3$

Subject to
$$2x_1 - x_2 + 2x_3 \le 2$$

 $x_1 + 4x_3 \le 4$

and
$$x_1, x_2, x_3 \ge 0$$
.

(14 Marks)

- b. Explain:
 - i) Weak duality property
 - ii) Strong duality property
 - iii) Complementary solutions property.

(06 Marks)

PART - B

5 a. Explain the key relationships between primal and dual problems.

(06 Marks)

b. Solve the following problem by dual simplex method.

Minimise
$$Z = 2x_1 + x_2$$

Subject to $3x_1 + x_2 \ge 3$
 $4x_1 + 3x_2 \ge 6$
 $x_1 + 2x_2 \ge 3$
and $x_1, x_2 \ge 0$.

(14 Marks)

- 6 a. Write different steps in Hungarian algorithm to solve an assignment problem. (08 Marks)
 - b. Find the initial basic feasible solution of transportation problem where cost matrix is given below:

		Destination					
		Α	В	C	D	Supply	
Origin	I	1	5	3	3	34	
	II	3	3	1	2	15	
	III	0	2	2	3	12	
	IV	2	7	2	4	19	
	Demand	21	25	17	17		

(12 Marks)

7 a. Explain the various variations in solving games, with examples.

(08 Marks)

b. Solve the game whose payoff matrix to the player A is given below:

		В				
		I	II	III		
A	I	1	7	2		
	II	6	2	7		
	III	5	2	6		

(12 Marks)

- **8** Explain briefly:
 - a. Decision trees
 - b. Tabu search algorithm
 - c. Genetic algorithm
 - d. Metaheuristics.

(20 Marks)

* * * *